Improved Locally Linear Embedding by Using Adaptive Neighborhood Selection Techniques

نویسندگان

  • Zhiyou Zhang
  • Jiayan Zhou
  • Haijian Shao
  • Anping Bao
چکیده

Unsupervised learning algorithm locally linear embedding (LLE) is a typical technique which applies the preserving embedding method of high dimensional data to low dimension. The number of neighborhood nodes of LLE is a decisive parameter because the improper value will affect the manifold structure in the local neighborhood and lead to the lower computational efficiency. Based on the fact that the shortest path in low-density can be established easily, this paper proposes an improved LLE method by using the sparse matrix in combination with the weights related to each point used for the linear combination in local neighborhood. The correlation dimension between high and low dimension is used to estimate the proper number of the reduced dimension, thereby selecting the best upper bound for the non-uniform manifold. Finally, we provide the experimental evaluation to verify the effectiveness of the proposed algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Neighborhood Selection Method Based on Silhouette Index for Locally Linear Embedding

Abstract Locally linear embedding (LLE) is a highly popular manifold learning and nonlinear dimensionality reduction technique. However, the neighborhood parameters of the algorithm are sensitive to the mapping results and difficult to choose. In this paper, we propose an adaptive neighborhood selection method based on Silhouette index for LLE algorithm. From the point of the cluster quality of...

متن کامل

MLLE: Modified Locally Linear Embedding Using Multiple Weights

The locally linear embedding (LLE) is improved by introducing multiple linearly independent local weight vectors for each neighborhood. We characterize the reconstruction weights and show the existence of the linearly independent weight vectors at each neighborhood. The modified locally linear embedding (MLLE) proposed in this paper is much stable. It can retrieve the ideal embedding if MLLE is...

متن کامل

Short term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network

The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...

متن کامل

Image Zooming using Non-linear Partial Differential Equation

The main issue in any image zooming techniques is to preserve the structure of the zoomed image. The zoomed image may suffer from the discontinuities in the soft regions and edges; it may contain artifacts, such as image blurring and blocky, and staircase effects. This paper presents a novel image zooming technique using Partial Differential Equations (PDEs). It combines a non-linear Fourth-ord...

متن کامل

Locally Linear Embedded Eigenspace Analysis

The existing nonlinear local methods for dimensionality reduction yield impressive results in data embedding and manifold visualization. However, they also open up the problem of how to define a unified projection from new data to the embedded subspace constructed by the training samples. Thinking globally and fitting locally, we present a new linear embedding approach, called Locally Embedded ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017